Evolution under Fluctuating Environments Explains Observed Robustness in Metabolic Networks
نویسندگان
چکیده
A high level of robustness against gene deletion is observed in many organisms. However, it is still not clear which biochemical features underline this robustness and how these are acquired during evolution. One hypothesis, specific to metabolic networks, is that robustness emerges as a byproduct of selection for biomass production in different environments. To test this hypothesis we performed evolutionary simulations of metabolic networks under stable and fluctuating environments. We find that networks evolved under the latter scenario can better tolerate single gene deletion in specific environments. Such robustness is underlined by an increased number of independent fluxes and multifunctional enzymes in the evolved networks. Observed robustness in networks evolved under fluctuating environments was "apparent," in the sense that it decreased significantly as we tested effects of gene deletions under all environments experienced during evolution. Furthermore, when we continued evolution of these networks under a stable environment, we found that any robustness they had acquired was completely lost. These findings provide evidence that evolution under fluctuating environments can account for the observed robustness in metabolic networks. Further, they suggest that organisms living under stable environments should display lower robustness in their metabolic networks, and that robustness should decrease upon switching to more stable environments.
منابع مشابه
Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or "evolvability") can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experienc...
متن کاملMemory and Fitness Optimization of Bacteria under Fluctuating Environments
Bacteria prudently regulate their metabolic phenotypes by sensing the availability of specific nutrients, expressing the required genes for their metabolism, and repressing them after specific metabolites are depleted. It is unclear, however, how genetic networks maintain and transmit phenotypic states between generations under rapidly fluctuating environments. By subjecting bacteria to fluctua...
متن کاملEvolution of Gene Regulatory Networks by Fluctuating Selection and Intrinsic Constraints
Various characteristics of complex gene regulatory networks (GRNs) have been discovered during the last decade, e.g., redundancy, exponential indegree distributions, scale-free outdegree distributions, mutational robustness, and evolvability. Although progress has been made in this field, it is not well understood whether these characteristics are the direct products of selection or those of ot...
متن کاملBistability in feedback circuits as a byproduct of evolution of evolvability
Noisy bistable dynamics in gene regulation can underlie stochastic switching and is demonstrated to be beneficial under fluctuating environments. It is not known, however, if fluctuating selection alone can result in bistable dynamics. Using a stochastic model of simple feedback networks, we apply fluctuating selection on gene expression and run in silico evolutionary simulations. We find that ...
متن کاملEvolutionary dynamics of an epigenetic switch in a fluctuating environment
Adaptation and survival in fluctuating environments is an evolutionary challenge faced by organisms. Epigenetic switches (bistable, molecular systems built from self-reinforcing feedback loops) have been suggested as a mechanism of bet-hedging and adaptation to fluctuating environments. These epigenetic systems are capable of spontaneously switching between phenotypes in the absence of DNA muta...
متن کامل